Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The LyαTomography IMACS Survey (LATIS) has produced large 3D maps of the intergalactic medium (IGM), providing a new window on the cosmic web atz∼ 2.5. A key advantage of Lyαtomography is that it enables the discovery of overdense regions without the need to detect their galaxy members in spectroscopic surveys, circumventing possible selection biases. We use these maps to identify 37 IGM-selected overdensities as regions of strong and spatially coherent Lyαabsorption. Simulations indicate that 85% of these are protoclusters, defined as the progenitors ofz= 0 halos with massMdesc> 1014M⊙, and that nearly all of the rest are protogroups (1013.5<Mdesc/M⊙< 1014). We estimate the masses and space densities of the IGM-selected overdensities and show they are in accordance with mock surveys. We investigate the LATIS counterparts of some previously reported protoclusters, including the proto-supercluster Hyperion. We identify a new component of Hyperion beyond its previously known extent. We show that the Lyαtransmission of the galaxy density peaks within Hyperion is consistent with a simple physical model (the fluctuating Gunn–Peterson approximation), suggesting that active galactic nucleus feedback or other processes have not affected the large-scale gas ionization within this structure as a whole. The LATIS catalog represents an order-of-magnitude increase in the number of IGM-selected protogroups and protoclusters and will enable new investigations of the connections between galaxies and their large-scale environments at cosmic noon.more » « lessFree, publicly-accessible full text available July 14, 2026
-
Abstract We investigate the consistency of intergalactic medium (IGM) tomography and galaxy surveys as tracers of the cosmic web and protoclusters atz ∼ 2.5. We use maps from the LyαTomography IMACS Survey (LATIS), which trace the distributions of Lyman-break galaxies (LBGs) and IGM Lyαabsorption on ≃4h−1cMpc scales within the same large volume. Overall, the joint distribution of IGM absorption and LBG density is well constrained and accurately described by a simple physical model. However, we identify several exceptional locations exhibiting strong IGM absorption indicative of a massive protocluster, yet no coincident overdensity of LBGs. As discussed by Newman et al., whose results we revise using the complete LATIS survey data, these are candidate ultraviolet (UV)-dim protoclusters that may harbor distinct galaxy populations missed by rest-UV spectroscopic surveys. We present follow-up observations targeting one such candidate embedded within Antu, an extended region of IGM absorption atz= 2.685 that contains five IGM-selected protoclusters and has a total mass of 3 × 1015M⊙. Lyαemitters trace the overall structure of Antu but avoid the center of the candidate UV-dim protocluster, which also appears to contain no submillimeter-selected sources. A near-infrared spectroscopic galaxy census is needed to determine whether this large region is dominated by galaxies with reduced or absent star formation activity. This work adds to a growing and puzzling literature on discrepancies among different galaxy and IGM tracers, whose resolution promises to shed light on the early stages of environment-dependent galaxy evolution.more » « lessFree, publicly-accessible full text available July 14, 2026
-
Abstract We present measurements ofz ∼ 2.4 ultraviolet (UV) background light using Lyαabsorption from galaxies atz ∼ 2–3 in the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) database. Thanks to the wide area of this survey, we also measure the variability of this light across the sky. The data suggest an asymmetric geometry where integrated UV light from background galaxies is absorbed by Hiwithin the halo of a foreground galaxy, in a configuration similar to damped Lyαsystems. Using stacking analyses of over 400,000 HETDEX LAE spectra, we argue that this background absorption is detectable in our data. We also argue that the absorption signal becomes negative due to HETDEX’s sky-subtraction procedure. The amount that the absorption is oversubtracted is representative of thez ∼ 2.4 UV contribution to the overall extragalactic background light (EBL) at Lyα. Using this method, we determine an average intensity (inνJνunits) of 12.9 ± 3.7 nW m−2sr−1at a median observed wavelength of 4134 Å, or a rest-frame UV background intensity of 508 ± 145 nW m−2sr−1atz ∼ 2.4. We find that this flux varies significantly depending on the density of galaxies in the field of observation. Our estimates are consistent with direct measurements of the overall EBL.more » « lessFree, publicly-accessible full text available April 8, 2026
-
Abstract The connection between galaxies and dark matter halos is often quantified using the stellar mass–halo mass (SMHM) relation. Optical and near-infrared imaging surveys have led to a broadly consistent picture of the evolving SMHM relation based on measurements of galaxy abundances and angular correlation functions. Spectroscopic surveys atz≳ 2 can also constrain the SMHM relation via the galaxy autocorrelation function and through the cross-correlation between galaxies and Lyαabsorption measured in transverse sight lines; however, such studies are very few and have produced some unexpected or inconclusive results. We use ∼3000 spectra ofz∼ 2.5 galaxies from the LyαTomography IMACS Survey (LATIS) to measure the galaxy–galaxy and galaxy–Lyαcorrelation functions in four bins of stellar mass spanning 109.2≲M*/M⊙≲ 1010.5. Parallel analyses of the MultiDarkN-body and ASTRID hydrodynamic cosmological simulations allow us to model the correlation functions, estimate covariance matrices, and infer halo masses. We find that results of the two methods are mutually consistent and broadly accord with standard SMHM relations. This consistency demonstrates that we are able to measure and model Lyαtransmission fluctuationsδFin LATIS accurately. We also show that the galaxy–Lyαcross-correlation, a free by-product of optical spectroscopic galaxy surveys at these redshifts, can constrain halo masses with similar precision to galaxy–galaxy clustering.more » « less
-
ABSTRACT We forecast the prospects for cross-correlating future line intensity mapping (LIM) surveys with the current and future Ly-α forest measurements. Using large cosmological hydrodynamic simulations, we model the emission from the CO rotational transition in the CO Mapping Array Project LIM experiment at the 5-yr benchmark and the Ly-α forest absorption signal for extended Baryon Acoustic Oscillations (BOSS), Dark energy survey instrument (DESI), and Prime Focus multiplex Spectroscopy survey (PFS). We show that CO × Ly-α forest significantly enhances the detection signal-to-noise ratio (S/N) of CO, with up to $$300{{\ \rm per\, cent}}$$ improvement when correlated with the PFS Ly-α forest survey and a 50–75 per cent enhancement with the available eBOSS or the upcoming DESI observations. This is competitive with even CO × spectroscopic galaxy surveys. Furthermore, our study suggests that the clustering of CO emission is tightly constrained by CO × Ly-α forest due to the increased sensitivity and the simplicity of Ly-α absorption modelling. Foreground contamination or systematics are expected not to be shared between LIM and Ly-α forest observations, providing an unbiased inference. Ly-α forest will aid in detecting the first LIM signals. We also estimate that [C ii] × Ly-α forest measurements from Experiment for Cryogenic Large-Aperture Intensity Mapping and DESI/eBOSS should have a larger S/N than planned [C ii] × quasar observations by about an order of magnitude.more » « less
-
Abstract Lyαtomography surveys have begun to produce 3D maps of the intergalactic medium opacity atz∼ 2.5 with megaparsec resolution. These surveys provide an exciting new way to discover and characterize high-redshift overdensities, including the progenitors of today’s massive groups and clusters of galaxies, known as protogroups and protoclusters. We use the IllustrisTNG-300 hydrodynamical simulation to build mock maps that realistically mimic those observed in the LyαTomographic IMACS Survey. We introduce a novel method for delineating the boundaries of structures detected in 3D Lyαflux maps by applying the watershed algorithm. We provide estimators for the dark matter masses of these structures (atz∼ 2.5), their descendant halo masses atz= 0, and the corresponding uncertainties. We also investigate the completeness of this method for the detection of protogroups and protoclusters. Compared to earlier work, we apply and characterize our method over a wider mass range that extends to massive protogroups. We also assess the widely used fluctuating Gunn–Peterson approximation applied to dark-matter-only simulations; we conclude that while it is adequate for estimating the Lyαabsorption signal from moderate-to-massive protoclusters (≳1014.2h−1M⊙), it artificially merges a minority of lower-mass structures with more massive neighbors. Our methods will be applied to current and future Lyαtomography surveys to create catalogs of overdensities and study environment-dependent galactic evolution in the Cosmic Noon era.more » « less
-
Abstract The direct measurement of the universe’s expansion history and the search for terrestrial planets in habitable zones around solar-type stars require extremely high-precision radial-velocity measures over a decade. This study proposes an approach for enabling high-precision radial-velocity measurements from space. The concept presents a combination of a high-dispersion densified pupil spectrograph and a novel line-of-sight monitor for telescopes. The precision of the radial-velocity measurements is determined by combining the spectrophotometric accuracy and the quality of the absorption lines in the recorded spectrum. Therefore, a highly dispersive densified pupil spectrograph proposed to perform stable spectroscopy can be utilized for high-precision radial-velocity measures. A concept involving the telescope’s line-of-sight monitor is developed to minimize the change of the telescope’s line of sight over a decade. This monitor allows the precise measurement of long-term telescope drift without any significant impact on the Airy disk when the densified pupil spectra are recorded. We analytically derive the uncertainty of the radial-velocity measurements, which is caused by the residual offset of the lines of sight at two epochs. We find that the error could be reduced down to approximately 1 cm s −1 , and the precision will be limited by another factor (e.g., wavelength calibration uncertainty). A combination of the high-precision spectrophotometry and the high spectral resolving power could open a new path toward the characterization of nearby non-transiting habitable planet candidates orbiting late-type stars. We present two simple and compact highly dispersed densified pupil spectrograph designs for cosmology and exoplanet sciences.more » « less
An official website of the United States government
